metabelian, supersoluble, monomial
Aliases: C33⋊1C18, C34.1C6, C32⋊C9⋊3S3, C33⋊C2⋊1C9, C33⋊C9⋊1C2, C32.6(S3×C9), C33.49(C3×S3), C3.2(C32⋊C18), C3.2(C33⋊C6), C32.34(C32⋊C6), (C3×C33⋊C2).1C3, SmallGroup(486,18)
Series: Derived ►Chief ►Lower central ►Upper central
C33 — C33⋊1C18 |
Generators and relations for C33⋊1C18
G = < a,b,c,d | a3=b3=c3=d18=1, ab=ba, ac=ca, dad-1=a-1b-1, bc=cb, dbd-1=b-1c-1, dcd-1=c-1 >
Subgroups: 660 in 87 conjugacy classes, 13 normal (all characteristic)
C1, C2, C3, C3, S3, C6, C9, C32, C32, C18, C3×S3, C3⋊S3, C3×C9, C33, C33, S3×C9, C3×C3⋊S3, C33⋊C2, C32⋊C9, C32⋊C9, C34, C32⋊C18, C3×C33⋊C2, C33⋊C9, C33⋊1C18
Quotients: C1, C2, C3, S3, C6, C9, C18, C3×S3, S3×C9, C32⋊C6, C32⋊C18, C33⋊C6, C33⋊1C18
(1 7 13)(2 14 8)(4 16 10)(5 11 17)
(2 8 14)(3 9 15)(5 17 11)(6 18 12)
(1 13 7)(2 8 14)(3 15 9)(4 10 16)(5 17 11)(6 12 18)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)
G:=sub<Sym(18)| (1,7,13)(2,14,8)(4,16,10)(5,11,17), (2,8,14)(3,9,15)(5,17,11)(6,18,12), (1,13,7)(2,8,14)(3,15,9)(4,10,16)(5,17,11)(6,12,18), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)>;
G:=Group( (1,7,13)(2,14,8)(4,16,10)(5,11,17), (2,8,14)(3,9,15)(5,17,11)(6,18,12), (1,13,7)(2,8,14)(3,15,9)(4,10,16)(5,17,11)(6,12,18), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18) );
G=PermutationGroup([[(1,7,13),(2,14,8),(4,16,10),(5,11,17)], [(2,8,14),(3,9,15),(5,17,11),(6,18,12)], [(1,13,7),(2,8,14),(3,15,9),(4,10,16),(5,17,11),(6,12,18)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)]])
G:=TransitiveGroup(18,159);
(1 27 18)(4 21 12)(7 15 24)
(1 18 27)(3 11 20)(4 12 21)(6 23 14)(7 24 15)(9 17 26)
(1 27 18)(2 19 10)(3 11 20)(4 21 12)(5 13 22)(6 23 14)(7 15 24)(8 25 16)(9 17 26)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)
G:=sub<Sym(27)| (1,27,18)(4,21,12)(7,15,24), (1,18,27)(3,11,20)(4,12,21)(6,23,14)(7,24,15)(9,17,26), (1,27,18)(2,19,10)(3,11,20)(4,21,12)(5,13,22)(6,23,14)(7,15,24)(8,25,16)(9,17,26), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)>;
G:=Group( (1,27,18)(4,21,12)(7,15,24), (1,18,27)(3,11,20)(4,12,21)(6,23,14)(7,24,15)(9,17,26), (1,27,18)(2,19,10)(3,11,20)(4,21,12)(5,13,22)(6,23,14)(7,15,24)(8,25,16)(9,17,26), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27) );
G=PermutationGroup([[(1,27,18),(4,21,12),(7,15,24)], [(1,18,27),(3,11,20),(4,12,21),(6,23,14),(7,24,15),(9,17,26)], [(1,27,18),(2,19,10),(3,11,20),(4,21,12),(5,13,22),(6,23,14),(7,15,24),(8,25,16),(9,17,26)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)]])
G:=TransitiveGroup(27,200);
39 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | ··· | 3Q | 6A | 6B | 9A | ··· | 9F | 9G | ··· | 9L | 18A | ··· | 18F |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | ··· | 3 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 27 | 1 | 1 | 2 | 2 | 2 | 6 | ··· | 6 | 27 | 27 | 9 | ··· | 9 | 18 | ··· | 18 | 27 | ··· | 27 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 6 | 6 | 6 | 6 |
type | + | + | + | + | + | ||||||||
image | C1 | C2 | C3 | C6 | C9 | C18 | S3 | C3×S3 | S3×C9 | C32⋊C6 | C32⋊C18 | C33⋊C6 | C33⋊1C18 |
kernel | C33⋊1C18 | C33⋊C9 | C3×C33⋊C2 | C34 | C33⋊C2 | C33 | C32⋊C9 | C33 | C32 | C32 | C3 | C3 | C1 |
# reps | 1 | 1 | 2 | 2 | 6 | 6 | 1 | 2 | 6 | 1 | 2 | 3 | 6 |
Matrix representation of C33⋊1C18 ►in GL6(𝔽19)
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
7 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 0 | 11 |
0 | 0 | 0 | 0 | 0 | 11 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
G:=sub<GL(6,GF(19))| [11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,11,0,0,0,0,0,0,7],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,11,0,0,0,7,0,0,0,0,0,0,7,0,0,0,11,0,0,0,0,0] >;
C33⋊1C18 in GAP, Magma, Sage, TeX
C_3^3\rtimes_1C_{18}
% in TeX
G:=Group("C3^3:1C18");
// GroupNames label
G:=SmallGroup(486,18);
// by ID
G=gap.SmallGroup(486,18);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,43,867,873,3244,3250,11669]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^3=d^18=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^-1,b*c=c*b,d*b*d^-1=b^-1*c^-1,d*c*d^-1=c^-1>;
// generators/relations